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Abstract

In this paper, we study self-adjointness and spectrum of operators of the form

H = −
d2

dx2
+ Fx,F > 0 on H = L2(−L,L).

H is called Stark operator and describes a quantum particle in a quantum asymmetric
well. Most of known results on mathematical physics does not take in consideration the
self-adjointness and the operating domains of such operators. We focus on this point and
give the parametrization of all self-adjoint extensions. This relates on self-adjoint domains of
singular symmetric differential operators. For some of these extensions, we numerically, give
the spectral properties of H. One of these examples performs the interesting phenomenon
of splitting of degenerate eigenvalues. This is done using the a combination of the Bisection
and Newton methods with a numerical accuracy less than 10−8.

Keywords Spectral theory, Shrödinger operators, Stark operators, self-adjointness, Symmet-
ric differential operators, Airy functions
AMS Subject Classifications 34B24, 47E05

1 Introduction

The study of self-adjoint domains of symmetric differential operators on Hilbert spaces is a
central problem in the theory of partial differential operators. It has a deep background in
mathematical physics. As it is already mentioned in [26], a lot of works confuse between
the symmetry (Hermiticity) and the self-adjointness, which leads to a non precise and even
incomplete results. Frequently the basic distinction between unbounded and bounded op-
erators is not considered, or often it is neglected. For getting a self-adjoint operator, the
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symmetric condition for unbounded operator is in general not sufficient. For differential op-
erators on bounded domains the boundaries conditions at the end of the interval can change
the situation and the question of self-adjointness it becomes more subtle and there are sev-
eral scenarios, and the presence of boundaries changes significantly the picture. The operator
can be self-adjoint, essentially self-adjoint, having many self-adjoint extensions or no self-
adjoint extension at all or even non symmetric. So in this situation, we need more analysis
to characterize a truly self-adjoint operator. In fact, if an observable of a quantum system is
constructed starting from a symmetric operator will not be able to give the result performing
measurement of such observable until we have made precise which self-adjoint extension of
the system operator represents the observable.

One could ask, why the self-adjoint property is important? To convince the readers of the
importance of this subject, we perform two fundamental reasons:

• It is well-known that in mathematical physics problems we are interested in, are observ-
able with real spectrum, which are guaranteed only for self adjoint operators. Thus it
is very important to know if the domains under which theses operators are self-adjoint.
Outside theses domains, eigenvalues are not only real-valued, and hence the operators
cannot be considered as physical operators.

• Every self-adjoint operator is the generator of a unitary group. Indeed when H is a
self-adjoint operator, the operators

Ut = exp(itH), t ∈ R;

are a (strongly continuous one-parameter) unitary group, and H is its generator [27].
More generally an operator generates a unitary group if and only if it is self-adjoint.
This is could be related to the existence of dynamics in quantum mechanics. Not only
the dynamical evolution is affected by the determination of the boundary conditions, or
the self-adjoint extensions of families of symmetric operators, but also the results of the
measures realized on the system and also the measurable quantities of the system [16].

1.1 Stark operators on finite intervals

Experimentally, the atomic Stark effect means the shifts viewed in atomic emission spectra
after placing the particle in a constant electric field of strength F . J. Stark, in the non-
relativistic quantum theory, this Stark effect is usually modeled by an Hamiltonian operator
that (in appropriately scaled units and with the atomic units 2m = h = q = 1 to simplify the
equation) has the form

H(F ) = −∆ + V (x)+ Fx. (1)

Hamiltonian that is parameterized by operators of the form (1) has been intensively studied
in the last five decinies [18, 23] and references therein. A quantum well is a particular kind
of structure in which one layer is surrounded by two barrier layers. Theses layers, in which
particles are confined, could be so thin that we cannot neglect the fact that particles are
waves. In fact, the allowed states in this structure correspond to standing waves in the
direction perpendicular to the layers. Mathematically this corresponds to the study of (1) on
a L2(I), with I is a finite interval seen as the support of V (known as the quantum well). Basic
properties of a quantum well could be studied through the simple particle in a box model.
In the case of infinite quantum well it is expected that the energy levels are quadratically
spaced, the energy level spacing becomes large for narrow wells.
When electric field is applied to quantum wells, their optical absorption spectrum near to the
band-gap energy can be changed considerably [18, 23], an effect known as electro-absorption.
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The correct results in that case can also be obtained by explicit expansion of the exact
eigenvalue condition, but this requires knowing the properties of the boundary behavior and
self-adjointness and the domain of the operator. This is the subject of the present paper. In
the following section we summarize related results and give a brief survey of literature.

1.2 Self-adjointness

The analysis of self-adjointness and the role of the boundary in quantum systems has became
a recent focus of activity in different branches [3] and references therein. Everitt in [10] gave
some results on self-adjoint domains under the assumption of the limit circle case and the
limit point case. Using the Glazman-Krein-Naimark theory Everitt et al. in [11] showed that
there exists a one-to-one correspondence between the set of all the self-adjoint extensions of
a minimal operator generated by quasi-differential expressions and the set of all the complete
Lagrangian subspaces of a related boundary space. They used symplectic geometry. Sun et al
[31, 35, 36] presented a complete and cordial characterization of all self-adjoint extensions of
symmetric differential operators. This is done by giving a new decomposition of the maximal
operator domain. The later result is generalized by Evans and Ibrahim in [9]. Fu in [14] gives
the characterizations of self-adjoint domains for singular symmetric operators by describing
boundary conditions of domain of conjugate differential operator, with singular points. Most
of These operators are defined on a weighted Hilbert function space. Self-adjointness of mo-
mentum operators in generalized coordinates is given in [7] and of curl operator in [15].
In [4], the authors consider a Schrödinger operator with a magnetic field and no electric
field on a domain in the Euclidean space with compact boundary. They give sufficient con-
ditions on the behavior of the magnetic field near the boundary which guarantees essential
self-adjointness of the operator. The problem concerning scalar potentials is first studied in
[25, 29], under sum assumption on the behavior of V when approaching the boundary. In [8],
a characterization was given for symmetric even order elliptic operators in bounded regular
domains. Recently in [12], the authors established a bijection between the self-adjoint of the
Laplace operator on bounded regular domain and the unitary operator on the boundary. In
[17], Katsnelson consider the formal prolate spheroid differential operator on a finite sym-
metric interval and describes the self-adjoint boundary conditions. He proves that among
all self-adjoint extensions there is a unique realization which lead to an operator commuting
with the Fourier operator trounced on the considered interval. In [5], a self-adjoint extensions
is considered for analyzing momentum and Laplace operator.
The current result deals with self-adjointness of Stark operator on finite intervals. We give
all parametrization giving self-adjointness. It should be stressed that the self-adjoint exten-
sions of different domains are parameterized by a unitary group. The result is based on the
von Neumann theory which provides necessary and sufficient conditions for the existence of
self-adjoint extensions of closed symmetric operators in Hilbert space [32]. This theory is
fully general and complectly solve the problem of self-adjoint extensions of every densely de-
fined and closed symmetric operator in abstract Hilbert space using unitary operator between
each deficiency [24]. However, for specific classes like stark operators, it would be suitable
to have a more concrete characterization of self-adjoint extension. At section 4 some par-
ticular extensions are considered and spectral properties are given. We focus that, changing
the self-adjoint extensions leads to different spectral results. The phenomena of splitting of
degenerates eigenvalues is observed for some particular self-adjoint boundary conditions. In
Section 4.1, we give more details on the subject of splitting phenomena. The energy spec-
trum is calculated using the stable-state schrodinger characterized by the specific potential
structure with the constant electric field. The problem is solved by representing the eigen-
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function as a superposition of the airy functions despite the potential is simple (square-well),
which lead to an analytical solution for the equation transforming on a very computationally
complexity. The problem overcame in many papers using perturbation method, we refer to
[26] among others. This has the disadvantages (as any perturbation method) to be effective
only for weak-enough electric field and produce invalid results for strong ones. For this, de-
veloping numerical methods to calculate the energy spectrum remains pertinent. It should be
stressed that in one of our studied examples, our calculation confirm the experimental results
(splitting phenomena). This method could lead to an exactly solvable approximate model.

2 The model and the result

We consider the Stark operator

H = −
d2

dx2
+ Fx,F > 0. (2)

The functional space is the Hilbert space L2([−L,L]) equipped with the scalar product

〈f,g〉 =

∫

L

−L

f(x)g(x)dx,∀f,g ∈ L2([−L,L]).

We notice that (2) corresponds to the (1), with V (x) = 0 if x ∈ [−L,L] and V (x) = +∞ if
not.
This model corresponds to a particle in a box : [−L,L] for L > 0 in a presence of an electric
fled of strength F . From a mathematical standpoint the situation could be seen to be quite
similar to the one with the free Laplacian, but up to our knowledge, it did not appear before
in the literature. So we give details below.
The maximal domain in which H is well defined will denote by Dmax, i.e

Dmax = {f ∈ L2([−L,L]);Hf ∈ L2([−L,L])}.

Consider the domain

D0 = {ψ ∈ Dmax and,ψ(−L) = ψ(L) = 0 = ψ′(−L) = ψ′(L)}.

It is a closed and densely defined operator. The density of D0 follows from the fact that
C∞

0 ([−L,L]) ⊂ D0. The closeness of H is due to the fact that the maximal domain is con-
sidered. Moreover, using the density of H2([−L,L]) in L2, we can get the closeness property.
Using integration by part we get that H is also a symmetric operator. The adjoint of H is
H∗ = H and

D(H∗) = {ψ ∈ Dmax withount any other condition}.

Hence, H is not a self-adjoint operator on D0 and the considered domain is too small to be
associated to aselfadjoint operator. So, H does not represent any physical observable and
can not generate any physical dynamics.
Let us notice that in the case of bounded operators as the domain of a densely defined bounded
operator can always be extended to the entire vector space, therefore, a bounded Hermitian
operator is also self-adjoint. However, in the unbounded case the situation is pathological
and a little bit more subtle.
Thus, we are interested clarifying conditions and domain under which symmetric, densely-
defined H can be self-adjoint and to know its self-adjoint extensions.
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Theorem 2.1. Let H be the operator defined by (2). Then H has infinitely many self-adjoint

extensions, these possible self-adjoint extensions of H are parameterized by a unitary matrix

U ∈ U(2). Let us denote them by HU = (H,D(U)), here D(U) is the space of functions

φ ∈ Dmax satisfying the following boundary conditions





Lφ′(−L)− iφ(−L)

Lφ′(L)+ iφ(L)



 = U





Lφ′(−L)+ iφ(−L)

Lφ′(L)− iφ(L)



 . (3)

Each self-adjoint extension has purely discrete spectrum.

The result of the last theorem could be related to the von Neumann theorem [32] which a
powerful tool used in such situation. The proof of Theorem 2.1 is given in the next section.

3 Deficiency indices, von Neumann’s theorem and

self-adjoitness

First we recall the definition and some properties of deficiency indices. For a Hilbert space
H, and operator (A,D(A)) defined on H, with D a dense subspace of D. The domain D(A∗),
of the adjoint A∗, is the space of functions ϕ such that the linear form

ψ → 〈Aϕ,ψ〉,

is continuous for the norm of H. So there exists a ψ∗ ∈ H such that

〈Aϕ,ψ〉 = 〈ϕ,ψ∗〉.

We define the adjoint A∗ by A∗ψ = ψ∗ [28]. The space E = D(A∗)/D(A). Is called factor
space.

Definition 3.1. For a densely defined, symmetric and closed operator (A,D(A)), we define

the deficiency subspaces D± by

D+ = {ϕ ∈ D(A∗),A∗ϕ = z+ϕ,Imz+ > 0},

D− = {ϕ ∈ D(A∗),A∗ϕ = z−ϕ,Imz− < 0},

with respective dimensions d+,d−. These are called the deficiency indices of the operator A

and will be denoted by the ordered pair (d+,d−).

We note that d+ and d− are independent of the points z+ and z− respectively [2, 6, 32],
so for simplicity we take z+ = i and z− = −i. The theorem below known as von Neumann
theorem relates the deficiency indices to the number of self-adjoint extension of an operator
for the proof see [2, 6, 32].

Theorem 3.2. [32] For a symmetric and closed operator A with deficiency indices (d+,d−)

there are three possibilities:

1. If d+ = d− = 0, then A is selfadjoint.

5
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2. If d+ = d− = d ≥ 1, then A has infinitely many self-adjoint extensions, parameterized by

a unitary d× d matrix.

3. If d+ �= d−, then A has no selfadjoint extension.

4. The dimension of the factor space is d− + d − +.

Remark 3.3. 1. The first point of the last theorem is a necessary and sufficient condition.

2. The second point says that the set of all selfadjoint extensions is parameterized by d2

real parameter.

3. The von Neumann’s argument did not show how we construct such self-adjoint exten-

sions.

Let us consider the equation

Hψ(x) = ±iλ0ψ(x), λ0 > 0, (4)

with H as in (2). This equation known as Airy equation has two independents solutions
Ai(·) and Bi(·) both in L2(−L,L)(See 10.4.1 in [1]). So the deficiency indices of H are (2,2)
and we will show that the self-adjoint extensions are parameterized by a U(2) matrices. By
Theorem 3.2 we conclude that dimension of the factor space E = D(H∗)/D(H) is 4.

To study these self-adjoint extensions, we start by introducing the sesquilinear form, for
φ,ψ ∈ Dmax

B(φ,ψ) =
1

2i
(〈H∗φ,ψ〉− 〈φ,H∗ψ〉).

B depends only on the boundary values of φ and ψ. When φ = ψ we get

B(φ,φ) =
1

2i
(φ′(L)φ(L) − φ(L)φ′(L)− φ′(−L)φ(−L)+ φ(−L)φ′(−L)).

Using parallelogram identity twice and the identities

1

2i
(xy − yx) =

1

4
(|x + iy|2 − |x − iy|2); ∀x,y ∈ C,

and
2(xy + yx) = |x + y|2 − |x − y|2; ∀x,y ∈ C,

we get that:

4LB(φ,φ) = | Lφ′(−L)− iφ(−L) |2 + | Lφ′(L)+ iφ(L) |2

− | Lφ′(−L)+ iφ(L) |2 − | Lφ′(L)− iφ(L) |2 . (5)

It is not obvious to conclude from the equation (5). As the factor space is of dimension 4,
the boundary form B can be identified to the following skew linear form with C

4 equipped
with the standard hermitian metric.

B : C4 → C

Z = (z1,z2,z3,z4) �→
1

2i
(z1z2 − z2z1 − z3z4 + z4z3).

This could be written as

B(Z,Z) = 〈











z1

z2

z3

z4











,J











z1

z2

z3

z4











〉.
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With

J =
1

2











0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0











.

B(Z,Z) = 0 ⇔ Z ⊥ JZ.

We set

P+ =
1

2
I + J,P− =

1

2
I − J.

So we get the following properties

J = J t,4J2 = I.

and
P 2

+ = P+,P 2
− = P−,P+ = P ∗

+,P− = P ∗

−,

P+P− = 0,P+ + P− = I.

So P+,P− are orthogonal projectors. These matrices project the space C
4 onto subspaces

C
4
+ = P+C

4 and C
4
− = P−C

4 and we get that

C
4 = C

4
+ ⊕C

4
−.

It turns out that J-self-orthogonal subspaces of C
4 are in one to one correspondence with

unitary operators acting from C
4
+ onto C

4
−.

Let D be a domain such that
D(H) ⊆ D ⊆ D(H∗).

To any D corresponds an extension of the operator H.

HDφ = H∗φ, ∀φ ∈ D.

We denote by D⊥J the space

{x ∈ E : B(x,y) = 0, ∀y ∈ D}.

We have
(HD)∗ = HD⊥J .

The domain of a self-adjoint extension of H is a subspace of Dmax, on which the sesquilinear
form B(φ,φ) vanishes identically. So HD is self-adjoint if only if

D = D⊥J .

Below we show that these possible self-adjoint extensions of H are parameterized by a unitary
matrix U ∈ U(2).

Lemma 3.4. 1. Let U be an unitary operator acting from C
4
+ onto C

4
−. Then the subspace

DU = {v + Uv,v ∈ C
4
+} is J-self-orthogonal, that is

DU = D⊥J
U .

2. For very J-self-orthogonal subspace D of C4 there exists a unitary operator U :C4
+ →C

4
−

such that

D = DU .

7
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3. The correspondence between J-self-orthogonal subspaces and unitary operators acting

from C
4
+ onto C

4
− is one to one;

U1 = U2 ⇔ DU1
= DU2

.

Proof. 1. The mapping from C
4
+ to DU defined by v �→ v + Uv, is one to one. Indeed, the

equality v +Uv = 0 implies that ‖ v ‖= 0 as v is orthogonal to Uv ∈ C
4
−. So the mapping

is bijective and we get

dim(DU ) = dim(C4
+) = 2.

Let v1 and v2 be two arbitrary vectors of C4
+. We set u1 = v1 +Uv1 and u2 = v2 +Uv2.

As 2J = P+ − P− and vi = P+vi , Uvi = P−Uvi, i = 1,2 using the properties of P+ and

P−, we get that u1 and u2 are J orthogonal. So

DU ⊆ (DU )⊥J .

Since the Hermitian form B, is non-degenerate on C
4, then dim(D⊥J

U ) = dimC
4 −

dim(DU ) = 2. So

DU = (DU )⊥J ,

i.e the subspace DU is J-self-orthogonal.

2. Let D be a J-self-orthogonal subspace. If

v ∈ D,v = v1 + v2,v1 ∈ C
4
+,v2 ∈ C

4
−,

the the condition of J self-orthogonality; v ⊥J v means that 〈v1,v1〉 = 〈v2,v2〉. So, if

v1 = 0, the also v. This implies that the projection mapping v → P+v, considered as

a mapping from D → C
4
+ is injective. For a J-self-orthogonal subspace D of C4. The

equality dim(D) = dim(C4) − dim(D) holds. So dim(D) = dim(C4
+) So, the injective

linear mapping v → P+v is surjective . The inverse mapping defined from C
4
− is presented

in the form v = v1 + Uv1, with U is a unitary operator acting from C
+
4 into C

4
−. This

mapping v1 → v1 + Uv1 maps the space C
4
+ onto the subspace D.

As 〈v,Jv〉 = 0 then 〈v1,v1〉 = 〈v2,v2〉, with v2 = Uv1. As v1 ∈C
4
+ is arbitrary, this means

that the operator U is isometric. Since dimC
4
+ = dimC

4
− the operator is unitary. Thus,

the originally given J-self-orthogonal subspace D is of the form DU . With U is a unitary

operator acting from C
4
+ to C

4
−.

3. The equality DU1
= DU2

means that any vector of the form v1 +Uv1 where v1 ∈ C
4
+ can

be represented in the form v2 + Uv2 with some v2 ∈ C
4
+ :

v1 + U1v1 = v2 + U2v2.

As v1,v2 ∈C
4 −+,U1v1,U2v2 ∈C

4
−, then v1 = v2 and U1v1 = U2v1 for any v1 ∈C

4
+ which

means that U1 = U2. Thus

DU1
= DU2

⇒ U1 = U2.

8
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This ends the proof of Lemma 3.4. �

Now we return to the equation (5) with boundary condition by setting z1 = Lφ′(−L) −

iφ(−L),z2 = Lφ′(L)+ iφ(L),z3 = Lφ′(−L)+ iφ(−L) and z4 = Lφ′(L)− iφ(L) .Let us denote

them by HU = (H,D(U)), here D(U) is the space of functions φ ∈ Dmax satisfying by (5), the

following boundary conditions





Lφ′(−L)− iφ(−L)

Lφ′(L)+ iφ(L)



 = U





Lφ′(−L)+ iφ(−L)

Lφ′(L)− iφ(L)



 . (6)

These boundary conditions describe all the self-adjoint extensions (HU ,D(U)) of H.

Remark 3.5. Let us point that the boundary condition (6) is so important and could even

break parity properties of solutions of eigenfunctions equations and even in the case when the

potential is of definite parity we can’t say noting about the solutions.

Using the fact that for n order differential operator with deficiency indices (n,n) all of its

self-adjoint extensions have a discrete spectrum, we conclude that all the spectra of the HU

are totaly discrete. So the proof of Theorem 2.1 is ended. �

For completeness let us recall that a 2×2 matrix U with complexes coefficients is an element

of U(2) if and only if U∗ · U = I2. So the determinant of U is a complex of modulus 1 and

detM : U(2) → U(1) is a group homomorphism which is surjective and having the subgroup

SU(2) of matrices determinant one as a kernel. So

U(1) ∼= U(2)/SU(2).

By this we get the following parametrization of U(2) and write that

U = eiθM, detM = 1, i.e M ∈ SU(2). (7)

For this let us recall some results and properties of SU(2), representation.

3.1 Representation and topology of SU(2)

As we deal with matrices of order two there is more explicit properties. Let M ∈ SU(2)

M =





α β

γ λ



 ;M∗ =





α γ

β λ



 ; (8)

using the fact det(M) = αβ − βγ = 1, we get

M−1 =





λ −β

−γ α



 . (9)

So

M−1 = M∗ ⇔ λ = α; and γ = −β,

9
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and the generic form of matrices of SU(2) is given by the following parametrization

M =





α β

−β α



 ; |α|2 + |β|2 = 1. (10)

By taking α = α1 + iα2 and β = β1 + iβ2,αi,βi ∈ R, we get that

|α1|2 + |α2|2 + |β1|2 + |β2|2 = 1.

This gives that SU(2) as a topological space is holomorphic to the sphere unity S3 in R
4.

SU(2) has three generators given Pauli matrices [30].

τ1 =





0 1

1 0



 ,τ2 =





0 −i

i 0



 ,τ3 =





1 0

0 −1



 . (11)

We write

M = α1I2 − i(α2,β1,β2).(τ1,τ2,τ3).

3.2 Form of solutions

The spectral equation associated to stark operator has been solved by Airy special functions

Ai(·) and Bi(·) [13, 33], see Figures 1, which are the solution of the following second order

differential equation

−
d2ψ

dx2
(x)+ Fxψ(x) = Eψ(x). (12)

Using the change of variable:

ξ =
E

Fρ
;ρ = F −

1

3 , x = ρz,

we get the new equation

ψ′′(z) = (z − ξ)ψ(z). (13)

The solutions of equ. (12) are two linearly independent Airy functions Ai(z−ξ) and Bi(z−ξ).

The eigenfunctions associated to the equation (13) are given as a superposition of two linearly

independent functions of the form

φ(z) = A ·Ai(z − ξ)+ B ·Bi(z − ξ); ΦΦΦ =





A

B



 ∈ R
2. (14)

Remark 3.6. At this stage, lets remark that works dealing with a half line domaine, i.e, with

a potential V (x) = 0 for x ≥ 0 and V (x) = +∞ for x < 0; in (14) we get just Ai(·) and the

quantized energies are then given in terms of the zeros of the well-behaved Airy Ai(·). So the

eigenvalues of the operator are given by E = F
2

3 ξ, with −ξ are the k-th zero of Ai.

The solutions of equation (13) are of the form

φ(x) = A ·Ai(F
1

3 (x −
E

F
))+ B ·Bi(F

1

3 (x −
E

F
)). (15)

10
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Figure 1: Airy functions and the corresponding derivatives.

We set

L+(E,F ) = F
1

3 (L −
E

F
), (16)

and

L−(E,F ) = −F
1

3 (L +
E

F
). (17)

So




Lφ′(−L)− iφ(−L)

Lφ′(L)+ iφ(L)





=





L(A ·Ai′(L−(E,F ))+ B · Bi′(L−(E,F )))− i(A ·Ai(L−(E,F ))+ B ·Bi(L−(E,F )))

L(A ·Ai′(L+(E,F ))+ B · Bi′(L+(E,F )))+ i(A ·Ai(L+(E,F ))+ B ·Bi(L+(E,F )))





=





A(L · Ai′(L−(E,F ))− iAi(L−(E,F )))+ B(L ·Bi′(L−(E,F ))− iBi(L−(E,F )))

A(L · Ai′(L+(E,F ))+ iAi(L+(E,F )))+ B(L ·Bi′(L+(E,F ))+ iB ·Bi(L+(E,F )))





= L(ξ)ΦΦΦ.

With

L(ξ) =





L · Ai′(L−(E,F ))− iAi(L−(E,F )) L ·Bi′(L−(E,F ))− iBi(L−(E,F ))

L · Ai′(L+(E,F ))+ iAi(L+(E,F )) L ·Bi′(L+(E,F ))+ iBi(L+(E,F ))



 .

and




Lφ′(−L)+ iφ(−L)

Lφ′(L)− iφ(L)





=





A(L · Ai′(L−(E,F ))+ iAi(L−(E,F )))+ B(L ·Bi′(L−(E,F ))+ iBi(L−(E,F )))

A(L · Ai′(L+(E,F ))− iAi(L+(E,F )))+ B(L ·Bi′(L+(E,F ))− iB ·Bi(L+(E,F )))





= M(ξ)ΦΦΦ.

With

M(ξ) =





L · Ai′(L−(E,F ))+ iAi(L−(E,F )) L ·Bi′(L−(E,F ))+ iBi(L−(E,F ))

L · Ai′(L+(E,F ))− iAi(L+(E,F )) L ·Bi′(L+(E,F ))− iBi(L+(E,F ))



 .
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Using (6) we get the following relation between L(ξ) and M(ξ).

(L(ξ)− UM(ξ))ΦΦΦ = 0. (18)

To get a nontrivial solution to (14), we need that (L(ξ)− UM(ξ)) be not invertible which is

equivalent to

det(L(ξ)− UM(ξ)) = 0. (19)

Unfortunately it is not possible to get a simple analytic expression for the equation (19).

Below, we give some particular cases which allow us to simplify least a little bit the general

expression.

4 Interesting particular cases

In this section, we consider four particular cases of U . They are the most interesting and gen-

erally studied in literature [20, 23, 28, 33], known as Dirichlet, Neumann, Dirichlet-Neumann

conditions and others. In general, it is not trivial to solve explicitly the determinant equations

(19). In [13], the authors used numerical methods. Namely, the classical "Newton method"

in "Mathematica tools" by "Find Root". Here, we implement a combination of the Bisection

and the Newton methods. We approximate the zeros of the determinants with a maximal

error 10−8. Below, we consider some particular cases, which allow us to perform interesting

computational results. For a fixed interval length L, we compute the first four eigenvalues

for different fields F . Thereafter, for fixed F , we determined the first four eigenvalues for

different width L of the quantum well. The associated eigenfunctions are also plotted.

1. The case U = I.

This case leads to the operator HI = (H,D(I)) known as Dirichlet operator, with

{φ ∈ L2([−L,L]),HI2
φ ∈ L2([−L,L]) and φ(−L) = φ(L) = 0}. (20)

So

L(ξ)− UM(ξ) = L(ξ)− M(ξ) = 2i





−Ai(L−(E,F )) −Bi(L−(E,F ))

Ai(L+(E,F )) Bi(L+(E,F ))



 .

The equation (19) yields to

Ai(L−(E,F ))Bi(L+(E,F ))− Ai(L+(E,F ))Bi(L−(E,F )) = 0. (21)

To get the representation of the eigenfunction φn(x) associated to the eigenvalue En

already calculated and given in table 1. We use the equation (14) and the boundary

conditions given in (20) to obtain

A ·Ai(L+(E,F ))+ B ·Bi(L+(E,F )) = 0, (22)

and

A ·Ai(L−(E,F ))+ B ·Bi(L−(E,F )) = 0. (23)

12
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This gives that that

A = −B
Bi(L−(E,F ))

Ai(L−(E,F ))
= −B

Bi(L+(E,F ))

Ai(L+(E,F ))
.

So finally, we get that

φn(x) = C
[

Bi(L−(E,F )) ·Ai(F
1

3 (x −
En

F
))− Ai(L−(E,F )) ·Bi(F

1

3 (x −
En

F
))

]

, (24)

with C ∈ R and

L+(E,F ) = F
1

3 (L −
E

F
) and L−(E,F ) = −F

1

3 (L +
E

F
). (25)

In table 1, we give the eigenvalues for different cases. It should be stressed that an

interesting effect appears by varying L and F . In the Figures 3. and 4., respectively,

we plot the corresponding eigenfunctions for different values of L and F .

L F E1 E2 E3 E4

1 0 2.4674 9.8696 22.2066 39.4784

1 0.01 2.4673 9.8696 22.2066 39.4784

1 0.1 2.4672 9.86965 22.2066 39.4784

1 1 2.4498 9.8748 22.2097 39.4803

1 5 2.0416 9.9877 22.2841 39.5261

1 1 2.4498 9.8748 22.2097 39.4803

2 1 0.3554 2.5324 5.6007 9.9001

3 1 −0.6618 1.0947 2.6628 4.5376

4 1 −1.6618 0.0879 1.5216 2.8152

Table 1: Eigenvalues of the case 1

13
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Figure 2: Determinant of case 1.
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Figure 3: Case 1,F=1, L=1,2, 3, 4.
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Figure 4: Case 1, L=1, F=0.01, 0.1, 1, 5.

2. The case U = −I.

This particular case leads to the operator H−I = (H,D(−I)) known as Neumann oper-

ator, with

{φ ∈ L2([−L,L]),HU ∈ L2([−L,L]) and φ′(−L) = φ′(L) = 0}. (26)

So

L(ξ)− UM(ξ) = L(ξ)+ M(ξ) = 2L





Ai′(L−(E,F )) Bi′(L−(E,F ))

Ai′(L+(E,F )) Bi′(L+(E,F ))



 .

The equation (19) yields to

Ai′(L−(E,F ))Bi′(L+(E,F ))− Ai′(L+(E,F ))Bi′(L−(E,F )) = 0. (27)

For the eigenfunctions we get:

φn(x) = C
[

Bi′(L−(E,F )) ·Ai(F
1

3 (x −
En

F
))− Ai′(L−(E,F )) ·Bi(F

1

3 (x −
En

F
))

]

, (28)

In the Figures 5. and 6., respectively, we plot the corresponding eigenfunctions related

to case 2. for different values of L and F .
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L F E1 E2 E3 E4

1 0 0 2.4674 9.8696 22.2066

1 0.01 −0.00001 2.4674 9.8696 22.2066

1 0.1 −0.0013 2.4684 9.8697 22.2066

1 1 −0.1278 2.5674 9.8825 22.2125

1 5 −2.0330 3.7841 10.215 22.3241

1 1 −0.1278 2.5674 9.8825 22.2112

2 1 −0.9818 1.1254 2.7014 5.6284

3 1 −1.9812 0.2475 1.7735 2.9509

4 1 −2.9812 −0.7518 0.8199 2.1551

Table 2: Eigenvalues of the case 2
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Figure 5: Case 2, F=1, L=1,2, 3, 4.
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Figure 6: Case 2, L=1, F=0.01, 0.1, 1, 5.

3. The case U =





1 0

0 −1



 .

{φ ∈ L2([−L,L]),HU ∈ L2([−L,L]) and φ(−L) = φ′(L) = 0}. (29)

In this particular case we get

L(ξ)− UM(ξ) = 2





−iAi(L−(E,F )) −iBi(L−(E,F ))

LAi′(L+(E,F )) LBi′(L+(E,F ))



 .

The equation (19) yields to

Ai′(L+(E,F ))Bi(L−(E,F ))− Ai(L−(E,F ))Bi′(L+(E,F )) = 0. (30)

For the eigenfunctions we get that

φn(x) = C
[

Bi(L−(E,F )) ·Ai(F
1

3 (x −
En

F
))− Ai(L−(E,F )) ·Bi(F

1

3 (x −
En

F
))

]

, (31)

Similarly to the previous cases, we plot In the Figures 7. and 8., respectively, the eigen-

functions related to case 3. for different values of L and F .
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L F E1 E2 E3 E4

1 0 0.6168 5.5516 15.4212 30.2256

1 0.01 0.6208 5.5521 15.4214 30.2257

1 0.1 0.6570 5.5563 15.4229 30.2265

1 1 0.9864 5.6153 15.4432 30.2367

1 5 1.6096 6.3689 15.6591 30.3396

1 1 0.9864 5.6153 15.4432 30.2367

2 1 0.3175 1.8336 3.9959 7.6204

3 1 −0.6619 1.0798 2.3777 3.6819

4 1 −1.6618 0.0879 1.5192 2.7497

Table 3: Eigenvalues of the case 3
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Figure 7: Case 3, F=1, L=1,2, 3, 4.
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Figure 8: Case 3, L=1, F=0.01, 0.1, 1, 5.

Remark 4.1. The absence of splitting and the shift phenomena in the non-degenerates case

found in the previous three cases corresponds to the vanishing of the linear stark effect in the

perturbation theory.

Remark 4.2. It is important to note that, for the three previous cases, the eigenvalues

decreases when L increases. This behavior is similar to the free case. See tables 1, 2 and

3. In figure 9, we remark that in the three cases, we have concentration of the eigenfunction

on the left of the well when F �= 0. i.e the particle is shifted to the left to minimize the total

energy.

4.1 Splitting phenomena

In this subsection, we will consider the case where U = τ1 =





0 1

1 0



 . It leads to the operator

Hτ1
= (H,D(τ1)), with

D(τ1) = {φ ∈ L2([−L,L]),HU ∈ L2([−L,L]) and φ′(−L) = φ′(L),φ(L) = φ(−L)}. (32)

This case is not considered in literature. We shad some lights on the spectral theory on

HU . We expect it modeled the system which highlights the phenomena of splitting that is

long sought by physician. Let’s recall that since 1913, J. Stark stated that, when a particle is
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Figure 9: Comparing the analytical eigenfunction for L = 1, F = 0 to the computational result for

L = 1, F = 5.

exited a strong electric field splits on number of components an effect that goes after his name.

The observed splitting agree with the calculation developed in this work. Which confirm the

accuracy of the implemented numerical methods used here. The splitting is symmetrical in

the where the field F = 0, see Figure 11.

Mathematically there is a deep relation between degeneracy and symmetry. This implies

the existence of conjugation under which the operator remains unchanged. Such question

is related to the theory of the symmetry group of the operator. The possible degeneracies

of the eigenvalues with a particular symmetry group of the operator is specified by dimen-

sionality of the irreducible representation of the group. The eigenfunction corresponding to

m-degenerates eigenvalues form a basis for a m-dimensional irreducible representation of the

symmetry group of the operator.

The degeneracy could arises due to the presence of some kind of symmetry in the system

under consideration or related a characteristic of dynamical symmetry of the system. It also

could be connected to the existence of bound orbits in the classical physics. The degeneracy

in the present case is abolished when the symmetry is bracken by the presence of external

electric field F . This engender the splitting in the degenerate energy level accrurating the

numerical part of the proved result. We notes that the first order Stark effect is zero for the

ground state (like Hydrogen atom).

The equation (19) yields to

[(Ai′(L−(E,F ))− Ai′(L+(E,F ))(Bi(L+(E,F ))− Bi(L−(E,F ))]

− [(Ai(L+(E,F ))− A(L−(E,F ))(Bi′(L−(E,F ))− Bi′(L+(E,F ))] = 0.

For the eigenfunctions, we get that

φn(x) = C
[

(Bi′(L+(E,F ))− Bi′(L−(E,F ))) ·Ai(F
1

3 (x −
En

F
))

+(Ai′(L−(E,F ))− Ai′(L+(E,F ))) ·Bi(F
1

3 (x −
En

F
))

]

, (33)
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Figure 10: Splitting: Compared with other three cases. It is a non-degenerates eigenvalues and

the stark effect was a shift of eigenvalues. In the current case it is degenerate and splitting.

L F E0 E1 E2 E3 E4

1 0 0.0 9.8696 39.4784 −− −−

1 0.01 0.0 9.86796 9.87119 39.4778 39.47891

2 0.01 0.0 2.46422 2.47705 9.86800 9.87119

3 0.01 0.0 1.09189 1.10144 4.34411 4.38889

4 0.01 0.0 0.61063 0.62336 2.46426 2.47063

Table 4: Case 4
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Figure 11: Case 4, F=0.01, L=1,2, 3, 4.

Remark 4.3. For the splitting case, we get the non-zero case between two eigenvalues of the

Stark operator, except for the ground state, see table 4. Moreover, to get a significant figure

satisfying the boundary conditions, we used a numerical precision up to 10−8. Indeed, if we

used a less precisions some of the geometrical behaviors of eigenfunctions are in general not

representative, see figure 11.

5 Concluding remarks

In this work, we presented an analytical and computational study of Stark operators and

precisely the self-adjoint operators on finite domains. We numerically analyzed interesting

boundary conditions. Even, we used a lot of approximations, the presented computational

result confirm and accurate all analytical ones. The splitting phenomena developed in this

work indicates a perfect start to develop other similar physical result, namely in the proper

Stark effect. We intend to study more realistic model by considering random behavior of

electric fields.
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6 Data availability statement

H. NAJAR : Sections 1,2,3 and 5.

M. Zahari: Section 4.
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